Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Ethyl 2-amino-4-(4-methoxyphenyl)-4*H*-benzo[*h*]chromene-3-carboxylate

Cheng Guo* and Xi-feng Gu

Department of Applied Chemistry, College of Science, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China

Correspondence e-mail: guocheng@njut.edu.cn

Key indicators

Single-crystal X-ray study $T=293~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.004~\mathrm{\mathring{A}}$ R factor = 0.055 wR factor = 0.184 Data-to-parameter ratio = 14.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, $C_{23}H_{21}NO_4$, was synthesized by the reaction of 1-naphthol with ethyl cyanocaetate and 4-methoxybenzaldehyde in ethanol under microwave irradiation. In the structure of $C_{23}H_{21}NO_4$, there are intramolecular and intermolecular N–H···O hydrogen bonds, also C–H··· π interactions.


Received 29 June 2005 Accepted 3 August 2005 Online 31 August 2005

Comment

Benzopyrans and their derivatives occupy an important place in the realm of natural and synthetic organic chemistry because of their biological and pharmacological properties (Morianka & Takahashi, 1977), such as antisterility (Brooks, 1998) and anticancer activities (Hyana & Saimoto, 1987). In addition, polyfunctionalized benzopyrans constitute the structural unit of a number of natural products and, because of the inherent reactivity of the inbuilt pyran ring, these are versatile synthons (Hatakeyama *et al.*, 1988). We report here the crystal structure of the title compound,(I).

$$NH_2$$
 C
 OCH_3

The molecular structure of (I) is shown in Fig. 1, where the dashed line indicates the $N-H\cdots O$ intramolecular hydrogen

A view of the molecular structure of (I). The dashed line indicates the intramolecular $N-H\cdots O$ hydrogen bond.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

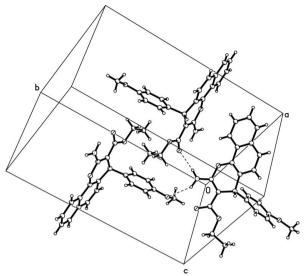


Figure 2 The crystal structure of (I). Dashed lines indicate intermolecular N-H···O hydrogen bonds.

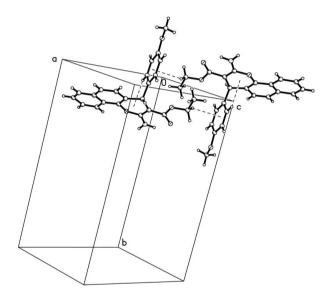


Figure 3 The $C-H \cdot \cdot \cdot \pi$ interactions in (I), shown as dashed lines.

bond (Table 2). In the crystal structure, molecules are linked by intermolecular N-H···O hydrogen bonds (Table 2 and Fig. 2). There are also intra- and intermolecular contacts which indicate weak $C-H\cdots\pi$ interactions (Fig. 3). Full details of the hydrogen-bond geometries are given in Table 2. The combination of rather weak interactions generates a threedimensional network.

Experimental

Compound (I) was prepared by the reaction of 1-naphthol (5 mmol) with ethyl cyanocaetate (5 mmol) and 4-methoxybenzaldehyde (5 mmol) in ethanol (2 ml), using piperidine as catalyst under microwave irradiation. Pure compound (I) was obtained by recrystallization from ethanol (m.p. 428-430 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. ${}^{1}H$ NMR (CDCl₃): δ 8.21 (d, 1H), 7.75 (d, 1H), 7.46–7.56 (m, 3H), 7.14-7.18 (m, 3H), 6.74 (d, 2H), 6.42 (s, 2H), 5.01 (s, 1H), 4.10 (q, 2H), 3.73 (s, 3H), 1.20 (t, 3H).

Crystal data

$C_{23}H_{21}NO_4$	$D_x = 1.283 \text{ Mg m}^{-3}$
$M_r = 375.41$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 25
a = 12.060 (2) Å	reflections
b = 18.511 (4) Å	$\theta = 10–13^{\circ}$
c = 8.9360 (18) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 102.99 \ (3)^{\circ}$	T = 293 (2) K
$V = 1943.8 (7) \text{ Å}^3$	Block, colourless
Z = 4	$0.4 \times 0.3 \times 0.2 \text{ mm}$

Data collection

Enraf–Nonius CAD-4	$\theta_{ m max} = 26.0^{\circ}$
diffractometer	$h = -14 \rightarrow 14$
$\nu/2\theta$ scans	$k = -22 \rightarrow 0$
Absorption correction: none	$l = 0 \rightarrow 11$
1053 measured reflections	3 standard reflections
3800 independent reflections	every 200 reflections
2000 reflections with $I > 2\sigma(I)$	intensity decay: none
$R_{\rm int} = 0.025$	

Refinement

reginenten	
Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.09P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.055$	+ 0.2P]
$wR(F^2) = 0.184$	where $P = (F_0^2 + 2F_c^2)/3$
S = 0.99	$(\Delta/\sigma)_{\text{max}} = 0.001$
3800 reflections	$\Delta \rho_{\text{max}} = 0.18 \text{ e Å}^{-3}$
262 parameters	$\Delta \rho_{\min} = -0.22 \text{ e Å}^{-3}$
H atoms treated by a mixture of	Extinction correction: SHELXL97
independent and constrained	Extinction coefficient: 0.0084 (19)
refinement	

Table 1 Selected geometric parameters (Å, °).

8	. ,	,	
O1-C2	1.380 (3)	O4-C22	1.449 (3)
O1-C1	1.415 (4)	N-C19	1.333 (3)
O2-C19	1.370 (3)	C5-C8	1.522 (4)
O2-C18	1.393 (3)	C20-C21	1.450 (4)
O3-C21	1.222 (3)	C22-C23	1.498 (4)
O4-C21	1.351 (3)		
C2-O1-C1	117.8 (3)	C9-C18-O2	122.5 (2)
C19-O2-C18	118.3 (2)	O2-C18-C17	114.0 (2)
C21-O4-C22	117.0(2)	N-C19-C20	127.8 (2)
C7-C2-O1	125.2 (3)	N-C19-O2	109.6 (2)
O1 - C2 - C3	115.6 (3)	C20-C19-O2	122.6 (2)
C6-C5-C8	121.9 (2)	C19-C20-C21	118.4 (2)
C4-C5-C8	120.5 (2)	C21-C20-C8	119.6 (2)
C20-C8-C5	114.7 (2)	O3-C21-O4	121.9 (3)
C5-C8-C9	108.9(2)	O3-C21-C20	126.7 (3)
C10-C9-C8	120.2 (3)	O4-C21-C20	111.4 (2)
C11-C12-C13	122.8 (3)	O4-C22-C23	106.7 (3)

Table 2 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
N-H1···O3i	0.87 (3)	2.14 (3)	3.002 (3)	172 (3)
$N-H2\cdots O3$ $N-H2\cdots O1^{ii}$	0.91 (4) 0.91 (4)	2.10 (3) 2.41 (4)	2.711 (3) 3.207 (4)	123 (3) 147 (3)
$C4-H4A\cdots Cg1$	0.93	2.68	3.028 (1)	142
$C22-H22A\cdots Cg2^{iii}$	0.97	2.90	3.636 (4)	134

Symmetry codes: (i) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (ii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (iii) -x + 1, -y, -z + 2. Cg1 is the centroid of the O2/C18/C9/C8/C20/C19 ring and Cg2 is the centroid of the C2-C7 ring.

The N-bound H atoms were located in a difference Fourier map and refined freely. The C-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding, with $U_{\rm iso}({\rm H})$ = $1.2 U_{\rm eq}({\rm C})$.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1996); software used to prepare material for publication: *SHELXTL* (Siemens, 1996).

References

Brooks, G. T. (1998). Pestic. Sci. 22, 41-50.

Enraf-Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1202–1024.

Hyana, T. & Saimoto, H. (1987). Jpn Patent No. JP62l812768.

Morianka, Y. & Takahashi, K. (1977). Jpn Patent No. JP52109000.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.